Office: (001) 212 998 8422
Mailing Address Professor James W. Canary Department of Chemistry New York University 100 Washington Square East New York, NY 10013
Lab Location Centrally located in Greenwich Village, the lab can be easily reached by subway from anywhere in the city.

DNA Structure and Topology

Canary Research Lab > News > Research > DNA Structure and Topology
Dec 26, 2019 Posted by: canaryresearchlab Research

The Canary and Sha Lab explore DNA as a programmable engineering material for constructing three-dimensional nanoarchitectures with precisely defined geometry, symmetry, and topology. Using robust, branched, and composable DNA motifs capable of macroscopic crystallization, we design self-assembling and mesoporous frameworks that organize matter with atomic  precision and predictable long-range order.

By encoding shape, symmetry, and connectivity directly into these systems through DNA sequence, structure, and topology – what we term “semantomorphic” science – we expand the design space of structural DNA nanotechnology and establish new rules for supramolecular architecture. Imbuing these structures with various organic and inorganic chemistries and investigating through x-ray crystallography and microscopy, we explore how molecular structure and topological constraints on the nanoscale give rise to emergent electronic, optical, and material properties.  

This research enables the development of DNA-based crystalline and hybrid materials for molecular electronics and nanophotonics. Through crystallographic control and encoded shape, we create nanomaterials wherein encoded semantic information dictates structure and function, positioning DNA as a versatile platform for next-generation architected materials.

Reading List:

Yilmaz, B.; Jaffe, M.; Wang, M.; Singh, V. R.; Woloszyn, K.; Canary, J. W.; et al. “DNA Chalk: Calcium Carbonate Functionalized 3D DNA Crystals for Responsive Materials,” 2025ChemRxiv

Wang, M.; Horvath, A.; Woloszyn, K.; Singh, V. R.; Klingsberg, J.; Rizk, J. A.; Canary, J. W.; et al. “Shape Shifting Crystals: Encoded Single-Stranded DNA for 3D Signal Propagation,” 2025ChemRxiv

Woloszyn, K.; Horvath, A.; Jaffe, M.; Perren, L.; Rueb, J.; Mahiba, S.; Jonoska, N.; et al. “Blunt-Force Assembly: Programmable DNA Architectures Using π–π Stacking,” 2025ChemRxiv

Al-Zarah, H.; Singh, V. R.; Woloszyn, K.; Perren, L.; Klingsberg, J.; Posnjak, G.; et al. “DNA Glass: Encasing Diffraction-Quality, Mesoporous DNA Crystals in Architected Silica,” Angew. Chem. Int. Ed. 2025, e16745. DOI

Liu, B.; Lu, B.; De, A.; Kim, K.; Perren, L.; Woloszyn, K.; Petrova, G.; Li, R.; Yang, C.; et al. “Electrical Control of a Metal-Mediated DNA Memory,” Matter 2025DOI

Allen, K.; Armentrout, P. B.; Berkman, C.; Boxer, S. G.; Burkart, M.; Canary, J. W.; et al. “US Must Support Chemistry Research,” Science 2025, 388 (6753), 1282–1283. DOI

Horvath, A.; Woloszyn, K.; Rizk, J. A.; Wang, M.; Rueb, J.; Perren, L.; Jaffe, M.; et al. “Topology-Based Lattice Engineering in Condensed Soft Matter,” 2025DOI

Vecchioni, S.; Singh, P.; De, A.; Chapa, M.; Singh, V. R.; Woloszyn, K.; Liu, R.; Liu, B.; et al. “Topological Matter: A Unified Perspective on Real and Momentum Space,” 2025ChemRxiv

De, A.; Lu, B.; Ohayon, Y. P.; Woloszyn, K.; Livernois, W.; Perren, L.; Yang, C.; et al. “Transmetalation for DNA-Based Molecular Electronics,” Small 2025, 21 (25), 2411518. DOI

Perren, L.; Woloszyn, K.; Janowski, J.; Faiaz, L.; Singh, V. R.; Jaffe, M.; Mao, C.; et al. “Topology-Enforced Synthesis of Atomically-Precise Silver Nanoclusters in 3D DNA Lattices,” 2025ChemRxiv